de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The influence of environmental variables on the abundance of aquatic insects: a comparison of ordination and artificial neural networks

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons56984

Wagner,  Rüdiger
Limnological River Station Schlitz, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons56915

Schmidt,  Hans-Heinrich
Limnological River Station Schlitz, Max Planck Institute for Limnology, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wagner, R., Dapper, T., & Schmidt, H.-H. (2000). The influence of environmental variables on the abundance of aquatic insects: a comparison of ordination and artificial neural networks. Hydrobiologia, 422/423, 143-152.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-C86D-D
Zusammenfassung
Two methods to predict the abundance of the mayflies Baetis rhodani and Baetis vernus (Insecta, Ephemeroptera) in the Breitenbach (Central Germany), based on a long-term data set of species and environmental variables were compared. Statistic methods and canonical correspondence analysis (CCA) attributed abundance of emerged insects to a specific discharge pattern during their larval development. However, prediction (specimens per year) is limited to magnitudes of thousands of specimens (which is outside 25% of the mean). The application of artificial neural networks (ANN) with various methods of variable pre-selection increased the precision of the prediction. Although more than one appropriate pre-processing method or artificial neural networks was found, R2 for the best abundance prediction was 0.62 for B. rhodani and 0.71 for B. vernus.