de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Study of ultrafast chemical dynamics by intense-laser field dissociative ionization

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons60889

Trushin,  Sergei A.
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;
Laser Chemistry, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60499

Fuß,  Werner
Laser Chemistry, Max Planck Institute of Quantum Optics, Max Planck Society;
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

Pushpa,  Kumbil Kutta
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60822

Schmid,  Wolfram
Laser Chemistry, Max Planck Institute of Quantum Optics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Trushin, S. A., Fuß, W., Pushpa, K. K., & Schmid, W. (2002). Study of ultrafast chemical dynamics by intense-laser field dissociative ionization. In A. Y. Chikishev, V. A. Orlovich, A. N. Rubinov, & A. M. Zheltikov (Eds.), ICONO 2001: Novel Trends in Nonlinear Laser Spectroscopy and Optical Diagnostics and Lasers in Chemistry, Biophysics, and Biomedicine (pp. 313-328). Bellingham: SPIE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-C2CC-1
Zusammenfassung
When investigating photochemical dynamics, one usually measures the time for disappearance of the primary excited state or the appearance of the product state or the total time the molecule needs for traveling from the former to the latter. Quantum chemistry predicts, however, that molecules often pas on this way via intermediate potential energy surfaces and conical intersections, the path sometimes branching and changing direction. In the conventional methods this intermediate region remains in the dark. We show that probing by intense-laser field ionization and mass-selective detection provides surprisingly many time constants which can reveal this region and thus practically allow to 'look into the black box', it is thus possible to monitor the molecule's pathway all along the potential energy surfaces from the initially excited region down to the ground state of the product. Even driving forces can be recognized. We discuss these and other advantages, but also pitfalls of this method and compare it with other methods of probing.