de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

L-band x-ray absorption of radiatively heated nickel

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons60877

Teubner,  U.
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60394

Andiel,  U.
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60489

Fölsner,  W.
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60474

Eidmann,  K.
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Chenais-Popovics, C., Fajardo, M., Gilleron, F., Teubner, U., Gauthier, J. C., Bauche-Arnoult, C., et al. (2002). L-band x-ray absorption of radiatively heated nickel. Physical Review E, 65(1): 016413. 016413. Retrieved from http://link.aps.org/abstract/PRE/v65/e016413.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-C279-C
Abstract
Absorption of L-M and L-N transitions of nickel has been measured using point projection spectroscopy. The x-ray radiation from laser-irradiated gold cavities was used to heat volumetrically nickel foils "tamped with carbon" up to 20 eV. Experimental spectra have been analyzed with calculations based on the spin-orbit split arrays statistical approach and performed for each ionic species Ni5+ to Ni11+. Using a least- squares fit, this method provides an ion distribution broader than at local thermodynamic equilibrium, which is explained by spatial and temporal temperature gradients. A major improvement in the simulation of the absolute value of transmission is obtained with a resolved transition array statistical calculation that reproduces the experimental spectrum with the nominal areal mass density by taking into account the saturation of narrow lines.