Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse




Journal Article

Three-dimensional theory for interaction between atomic ensembles and free-space light


Cirac,  J. Ignacio
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Duan, L. M., Cirac, J. I., & Zoller, P. (2002). Three-dimensional theory for interaction between atomic ensembles and free-space light. Physical Review A, 66(2): 023818. 023818. Retrieved from

Cite as:
Atomic ensembles have shown to be a promising candidate for implementations of quantum information processing by many recently discovered schemes. All these schemes are based on the interaction between optical beams and atomic ensembles. For description of these interactions, one assumed either a cavity- QED model or a one-dimensional light propagation model, which is still inadequate for a full prediction and understanding of most of the current experimental efforts that are actually taken in the three-dimensional free space. Here, we propose a perturbative theory to describe the three-dimensional effects in interaction between atomic ensembles and free-space light with a level configuration important for several applications. The calculations reveal some significant effects that were not known before from the other approaches, such as the inherent mode-mismatching noise and the optimal mode-matching conditions. The three-dimensional theory confirms the collective enhancement of the signal-to-noise ratio which is believed to be one of the main advantages of the ensemble-based quantum information processing schemes, however, it also shows that this enhancement needs to be understood in a more subtle way with an appropriate mode-matching method.