de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

MeV ion jets from short-pulse-laser interaction with thin foils

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons60548

Hegelich,  M.
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60597

Karsch,  S.
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60770

Pretzler,  G.
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60534

Habs,  D.
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60946

Witte,  K.
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., et al. (2002). MeV ion jets from short-pulse-laser interaction with thin foils. Physical Review Letters, 89(8): 085002. 085002. Retrieved from http://link.aps.org/abstract/PRL/v89/e085002.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-C1D7-F
Zusammenfassung
Collimated jets of carbon and fluorine ions up to 5 MeV/nucleon (~100 MeV) are observed from the rear surface of thin foils irradiated with laser intensities of up to 5x1019W/cm2. The normally dominant proton acceleration could be surpressed by removing the hydrocarbon contaminants by resistive heating. This inhibits screening effects and permits effective energy transfer and acceleration of other ion species. The acceleration dynamics and the spatiotemporal distributions of the accelerating E fields at the rear surface of the target are inferred from the detailed spectra.