de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Fermionizing a small gas of ultracold bosons

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons60744

Paredes,  Belen
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60441

Cirac,  J. Ignacio
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Paredes, B., Zoller, P., & Cirac, J. I. (2002). Fermionizing a small gas of ultracold bosons. Physical Review A, 66(3): 033609. 033609. Retrieved from http://link.aps.org/abstract/PRA/v66/e033609.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-C1D1-C
Zusammenfassung
We study the physics of a rapidly rotating gas of ultracold atomic bosons, with an internal degree of freedom. We show that in the limit of rapid rotation of the trap the problem exactly maps onto that of noninteracting fermions with spin in the lowest Landau level. The spectrum of the real bosonic system is identical to the one of the effective fermions, with the same eigenvalues and the same density of states. When the ratio of the number of atoms to the spin degeneracy is an integer number, the ground state for the effective fermions is an integer quantum Hall state. The corresponding bosonic state is a fractional quantum Hall liquid whose filling factor ranges in the sequence ν=1/2,2/3,3/4,..., as the spin degeneracy increases. Anyons with 1/2,1/3,1/4,... statistics can be created by inserting lasers with the appropriate polarizations. A special situation appears when the spin degeneracy equals the number of atoms in the gas. The ground state is then the product of a completely antisymmetric spin state and a ν=1 Laughlin state. In this case the system exhibits fermionic excitations with fermionic statistics although the real components are bosonic atoms.