de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Collapse and revival of the matter wave field of a Bose- Einstein condensate

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons60521

Greiner,  Markus
Laser Spectroscopy, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60683

Mandel,  Olaf
Laser Spectroscopy, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60535

Hänsch,  T. W.
Laser Spectroscopy, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60292

Bloch,  Immanuel
Quantum Many Body Systems, Max Planck Institute of Quantum Optics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Greiner, M., Mandel, O., Hänsch, T. W., & Bloch, I. (2002). Collapse and revival of the matter wave field of a Bose- Einstein condensate. Nature, 419(6902), 51-54. Retrieved from http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v419/n6902/abs/nature00968_fs.html.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-C1C9-F
Zusammenfassung
A Bose-Einstein condensate represents the most 'classical' form of a matter wave, just as an optical laser emits the most classical form of an electromagnetic wave. Nevertheless, the matter wave field has a quantized structure owing to the granularity of the discrete underlying atoms. Although such a field is usually assumed to be intrinsically stable (apart from incoherent loss processes), this is no longer true when the condensate is in a coherent superposition of different atom number states(1-6). For example, in a Bose-Einstein condensate confined by a three-dimensional optical lattice, each potential well can be prepared in a coherent superposition of different atom number states, with constant relative phases between neighbouring lattice sites. It is then natural to ask how the individual matter wave fields and their relative phases evolve. Here we use such a set-up to investigate these questions experimentally, observing that the matter wave field of the Bose-Einstein condensate undergoes a periodic series of collapses and revivals; this behaviour is directly demonstrated in the dynamical evolution of the multiple matter wave interference pattern. We attribute the oscillations to the quantized structure of the matter wave field and the collisions between individual atoms.