de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Astrophysical and inertial-confinement-fusion plasmas generated with millijoule femtosecond laser pulses

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons60394

Andiel,  U.
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60474

Eidmann,  K.
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60946

Witte,  K.
Laboratory for Attosecond Physics, Max Planck Institute of Quantum Optics, Max Planck Society;
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60682

Mancini,  R.
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60537

Hakel,  P.
Laser Plasma Physics, Max Planck Institute of Quantum Optics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Andiel, U., Eidmann, K., Witte, K., Mancini, R., & Hakel, P. (2002). Astrophysical and inertial-confinement-fusion plasmas generated with millijoule femtosecond laser pulses. Journal of Modern Optics, 49(14-15 Sp. Iss. SI), 2615-2628. Retrieved from http://taddeo.ingentaselect.com/vl=1424047/cl=22/nw=1/rpsv/catchword/tandf/09500340/v49n14/s27/p2615.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-C1AB-4
Zusammenfassung
By irradiating a target consisting of a thin aluminum slab buried in carbon with blue pedestal-free millijoule femtosecond laser pulses, it is shown that the aluminum slab can be isochorically (at constant volume) heated and thereby converted into a hot dense plasma. By analysing its K-shell emission, temperatures up to 500 eV are found. The experimentally observed increase in line-width with density is in accordance with theory. The long-standing issue of line shifting is resolved by demonstrating that there exists a real line shift increasing with increasing electron density as predicted by a recent theoretical investigation, and blending is a minor effect only.