de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Bosons in one-dimensional incommensurate superlattices

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons60797

Roscilde,  Tommaso
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Roscilde, T. (2008). Bosons in one-dimensional incommensurate superlattices. Physical Review A, 77(6): 063605. doi:10.1103/PhysRevA.77.063605.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-B57B-F
Zusammenfassung
We investigate numerically the zero-temperature physics of the one-dimensional Bose-Hubbard model in an incommensurate cosine potential, recently realized in experiments with cold bosons in optical superlattices [L. Fallani et al., Phys. Rev. Lett. 98, 130404 (2007). An incommensurate cosine potential has intermediate properties between a truly periodic and a fully random potential, displaying a characteristic length scale (the quasiperiod) which is shown to set a finite lower bound to the excitation energy of the system at special incommensurate fillings. This leads to the emergence of gapped incommensurate band-insulator (IBI) phases along with gapless Bose-glass (BG) phases for strong quasiperiodic potential for both hard-core and soft-core bosons. Enriching the spatial features of the potential by the addition of a second incommensurate component appears to remove the IBI regions, stabilizing a continuous BG phase over an extended parameter range. Moreover, we discuss the validity of the local-density approximation in the presence of a parabolic trap, clarifying the notion of a local BG phase in a trapped system; we investigate the behavior of first-and second-order coherence upon increasing the strength of the quasiperiodic potential; and we discuss the ab initio derivation of the Bose-Hubbard Hamiltonian with quasiperiodic potential starting from the microscopic Hamiltonian of bosons in an incommensurate superlattice.