de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Computational difficulty of finding matrix product ground states

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons60830

Schuch,  Norbert
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60441

Cirac,  J. Ignacio
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons60905

Verstraete,  Frank
Theory, Max Planck Institute of Quantum Optics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schuch, N., Cirac, J. I., & Verstraete, F. (2008). Computational difficulty of finding matrix product ground states. Physical Review Letters, 100(25): 250501. doi:10.1103/PhysRevLett.100.250501.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-B559-C
Zusammenfassung
We determine the computational difficulty of finding ground states of one-dimensional (1D) Hamiltonians, which are known to be matrix product states (MPS). To this end, we construct a class of 1D frustration-free Hamiltonians with unique MPS ground states and a polynomial gap above, for which finding the ground state is at least as hard as factoring. Without the uniqueness of the ground state, the problem becomes NP complete, and thus for these Hamiltonians it cannot even be certified that the ground state has been found. This poses new bounds on convergence proofs for variational methods that use MPS.