de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Predicting reaction times in word recognition by unsupervised learning of morphology

MPG-Autoren
Es sind keine MPG-Autoren in der Publikation vorhanden
Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

prediction_reaction_LNCS_2011.pdf
(Verlagsversion), 183KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Virpioja, S., Lehtonen, M., Hulten, A., Salmelin, R., & Lagus, K. (2011). Predicting reaction times in word recognition by unsupervised learning of morphology. In W. Honkela, W. Dutch, M. Girolami, & S. Kaski (Eds.), Artificial Neural Networks and Machine Learning – ICANN 2011 (pp. 275-282). Berlin: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-A0A7-1
Zusammenfassung
A central question in the study of the mental lexicon is how morphologically complex words are processed. We consider this question from the viewpoint of statistical models of morphology. As an indicator of the mental processing cost in the brain, we use reaction times to words in a visual lexical decision task on Finnish nouns. Statistical correlation between a model and reaction times is employed as a goodness measure of the model. In particular, we study Morfessor, an unsupervised method for learning concatenative morphology. The results for a set of inflected and monomorphemic Finnish nouns reveal that the probabilities given by Morfessor, especially the Categories-MAP version, show considerably higher correlations to the reaction times than simple word statistics such as frequency, morphological family size, or length. These correlations are also higher than when any individual test subject is viewed as a model.