Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Enzymatic reactions of triosephosphate isomerase: A theoretical calibration study

MPG-Autoren
/persons/resource/persons59045

Thiel,  W.
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lennartz, C., Schäfer, A., Terstegen, F., & Thiel, W. (2002). Enzymatic reactions of triosephosphate isomerase: A theoretical calibration study. Journal of Physical Chemistry B, 106(7), 1758-1767. doi:10.1021/jp012658k.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-9A13-7
Zusammenfassung
Combined quantum mechanical (QM) and molecular mechanical (MM) calculations are reported for the triosephosphate isomerase- catalyzed conversion of dihydroxy acetone phosphate into glyceraldehyde 3-phosphate. The minima and transition states for the relevant proton-transfer reactions have been located on QM/MM potential surfaces. The primary objective of this work is to study the sensitivity of optimized structures and relative energies toward variations in the QM/MM model, including the choice of the QM method, the size of the QM region, the size of the optimized MM region, and the treatment of the QM/MM boundary. The QM methods that have been applied in combination with the CHARMm force field range from semiempirical (AM1) to density functional (BP86, B3LYP) and ab initio (MP2) methods, the most extensive QM calculations involving 275 atoms and 2162 basis functions at the density functional level, Implications of the different choices of QM/MM options on the energy profile are discussed. From a mechanistic point of view, the present QM/MM results support a four-step proton-transfer pathway via an enediol, with involvement of neutral His95 acting as a proton donor, since the alternative direct intramolecular proton transfer in the enediolate is disfavored by the protein environment.