Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila

MPG-Autoren
/persons/resource/persons38751

Aso,  Yoshinori
Max Planck Research Group: Behavioral Genetics / Tanimoto, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39077

Siwanowicz,  Igor
Max Planck Research Group: Behavioral Genetics / Tanimoto, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons39094

Tanimoto,  Hiromu
Max Planck Research Group: Behavioral Genetics / Tanimoto, MPI of Neurobiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Placais, P.-Y., Trannoy, S., Isabel, G., Aso, Y., Siwanowicz, I., Belliart-Guerin, G., et al. (2012). Slow oscillations in two pairs of dopaminergic neurons gate long-term memory formation in Drosophila. Nature Neuroscience, 15(4), 592-599. doi:10.1038/nn.3055.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-858F-D
Zusammenfassung
A fundamental duty of any efficient memory system is to prevent
long-lasting storage of poorly relevant information. However, little is
known about dedicated mechanisms that appropriately trigger production
of long-term memory (LTM). We examined the role of Drosophila
dopaminergic neurons in the control of LTM formation and found that
they act as a switch between two exclusive consolidation pathways
leading to LTM or anesthesia-resistant memory (ARM). Blockade, after
aversive olfactory conditioning, of three pairs of dopaminergic neurons
projecting on mushroom bodies, the olfactory memory center, enhanced
ARM, whereas their overactivation conversely impaired ARM. Notably,
blockade of these neurons during the intertrial intervals of a spaced
training precluded LTM formation. Two pairs of these dopaminergic
neurons displayed sustained calcium oscillations in naive flies.
Oscillations were weakened by ARM-inducing massed training and were
enhanced during LTM formation. Our results indicate that oscillations
of two pairs of dopaminergic neurons control ARM levels and gate LTM.