de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

Highly scalable dynamic load balancing in the atmospheric modeling system COSMO-SPECS+FD4

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons37165

Grützun,  V.
Hans Ertel Research Group Clouds and Convection, The Atmosphere in the Earth System, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lieber, M., Grützun, V., Wolke, R., Müller, M. S., & Nagel, W. E. (2012). Highly scalable dynamic load balancing in the atmospheric modeling system COSMO-SPECS+FD4. In Applied Parallel and Scientific Computing: 10th International Conference, PARA 2010, Reykjavík, Iceland, June 6-9, 2010, Revised Selected Papers, Part I (pp. 131-141). Berlin: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-8220-0
Zusammenfassung
To study the complex interactions between cloud processes and the atmosphere, several atmospheric models have been coupled with detailed spectral cloud microphysics schemes. These schemes are computationally expensive, which limits their practical application. Additionally, our performance analysis of the model system COSMO-SPECS (atmospheric model of the Consortium for Small-scale Modeling coupled with SPECtral bin cloud microphysicS) shows a significant load imbalance due to the cloud model. To overcome this issue and enable dynamic load balancing, we propose the separation of the cloud scheme from the static partitioning of the atmospheric model. Using the framework FD4 (Four-Dimensional Distributed Dynamic Data structures), we show that this approach successfully eliminates the load imbalance and improves the scalability of the model system. We present a scalability analysis of the dynamic load balancing and coupling for two different supercomputers. The observed overhead is 6% on 1600 cores of an SGI Altix 4700 and less than 7% on a BlueGene/P system at 64Ki cores. © 2012 Springer-Verlag.