de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Characterization of rape field microwave emission and implications to surface soil moisture retrievals

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons37243

Loew,  A.
Terrestrial Remote Sensing / HOAPS, The Land in the Earth System, MPI for Meteorology, Max Planck Society;
CRG Terrestrial Remote Sensing, Research Area A: Climate Dynamics and Variability, The CliSAP Cluster of Excellence, External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Schlenz, F., Fallmann, J., Marzahn, P., Loew, A., & Mauser, W. (2012). Characterization of rape field microwave emission and implications to surface soil moisture retrievals. Remote Sensing, 4, 247-270. doi:10.3390/rs4010247.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-81F8-1
Zusammenfassung
In the course of Soil Moisture and Ocean Salinity (SMOS) mission calibration and validation activities, a ground based L-band radiometer ELBARA II was situated at the test site Puch in Southern Germany in the Upper Danube Catchment. The experiment is described and the different data sets acquired are presented. The L-band microwave emission of the biosphere (L-MEB) model that is also used in the SMOS L2 soil moisture algorithm is used to simulate the microwave emission of a winter oilseed rape field in Puch that was also observed by the radiometer. As there is a lack of a rape parameterization for L-MEB the SMOS default parameters for crops are used in a first step which does not lead to satisfying modeling results. Therefore, a new parameterization for L-MEB is developed that allows us to model the microwave emission of a winter oilseed rape field at the test site with better results. The soil moisture retrieval performance of the new parameterization is assessed in different retrieval configurations and the results are discussed. To allow satisfying results, the periods before and after winter have to be modeled with different parameter sets as the vegetation behavior is very different during these two development stages. With the new parameterization it is possible to retrieve soil moisture from multiangular brightness temperature data with a root mean squared error around 0.045-0.051 m 3/m 3 in a two parameter retrieval with soil moisture and roughness parameter Hr as free parameters. © 2012 by the authors.