Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Influence of controlled nanoscale roughness on physisorbed two- dimensional crystals at graphite-liquid interfaces

MPG-Autoren
/persons/resource/persons138497

Stabel,  A.
MPI for Polymer Research, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tracz, A., Stabel, A., & Rabe, J. P. (2002). Influence of controlled nanoscale roughness on physisorbed two- dimensional crystals at graphite-liquid interfaces. Langmuir, 18(24), 9319-9326. doi:10.1021/la025666g.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-6492-F
Zusammenfassung
Scanning tunneling microscopy is used to monitor the influence of a controlled nanometer scale surface roughness on structure and stability of physisorbed, crystallized monolayers at the interface between graphite and molecular solutions. The basal plane of graphite is modified by creating atomic scale defects, which are subsequently thermally oxidized to yield monolayer deep circular pits of controlled two-dimensional density and diameters. Alkanes and alkylated oligothiophenes are adsorbed as flat-lying lamellae from solution. Monolayer crystallization is inhibited when the mean distance between the pits becomes comparable to the size of a single molecule. On a time scale of 100 ms, the critical pit diameter for the formation of ordered domains within a pit is two to three lamella widths (6-8 nm). These domains are stabilized and decoupled from those on the terrace. When the pit diameter is increased by a factor of 8 - 10, the stability inside the pit can be increased by 4 orders of magnitude. This means that the information connected to the orientation of the lamellae of a domain can be stored on time scale of 100 ms in as little as about a dozen molecules.