de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons47832

Ego,  C.
MPI for Polymer Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons47960

Grimsdale,  Andrew
MPI for Polymer Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons48459

Müllen,  Klaus
MPI for Polymer Research, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hofkens, J., Cotlet, M., Vosch, T., Tinnefeld, P., Weston, K. D., Ego, C., et al. (2003). Revealing competitive Forster-type resonance energy-transfer pathways in single bichromophoric molecules. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13146-13151.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-63A9-5
Zusammenfassung
We demonstrate measurements of the efficiency of competing Forster-type energy-transfer pathways in single bichromophoric systems by monitoring simultaneously the fluorescence intensity, fluorescence lifetime, and the number of independent emitters with time. Peryleneimide end-capped fluorene trimers, hexamers, and polymers with interchromophore distances of 3.4, 5.9, and on average 42 nm, respectively, served as bichromophoric systems. Because of different energy-transfer efficiencies, variations in the interchromophore distance enable the switching between homo-energy transfer (energy hopping), singlet-singlet annihilation, and singlet-triplet annihilation. The data suggest that similar energy-transfer pathways have to be considered in the analysis of single-molecule trajectories of donor/acceptor pairs as well as in natural and synthetic multichromophoric systems such as light-harvesting antennas, oligomeric fluorescent proteins, and dendrimers. Here we report selectively visualization of different energy-transfer pathways taking place between identical fluorophores in individual bichromophoric molecules.