de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Supramolecular Assembly of Dendritic Polymers Elucidated by 1H and 13C Solid-State MAS NMR Spectroscopy

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons48632

Rapp,  A.
MPI for Polymer Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons48720

Schnell,  Ingo
MPI for Polymer Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons48738

Sebastiani,  Daniel
MPI for Polymer Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons47675

Brown,  S. P.
MPI for Polymer Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons48786

Spiess,  Hans Wolfgang
MPI for Polymer Research, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Rapp, A., Schnell, I., Sebastiani, D., Brown, S. P., Percec, V., & Spiess, H. W. (2003). Supramolecular Assembly of Dendritic Polymers Elucidated by 1H and 13C Solid-State MAS NMR Spectroscopy. Journal of the American Chemical Society, 125(43), 13284-13297.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-6346-3
Zusammenfassung
Advanced solid-state NMR methods under fast magic-angle spinning (MAS) are used to study the structure and dynamics of large supramolecular systems, which consist of a polymer backbone with dendritic side groups and self-assemble into a columnar structure. The NMR experiments are performed on as-synthesized samples, i.e., no isotopic enrichment is required. The analysis of 1H NMR chemical-shift effects as well as dipolar 1H-1H or 1H-13C couplings provide site-specific insight into the local structure and the segmental dynamics, in particular, of phenyl rings and -CH2O- linking units within the dendrons. Relative changes of 1H chemical shifts (of up to -3 ppm) serve as distance constraints and allow protons to be positioned relative to aromatic rings. Together with dipolar spinning sideband patterns, - packing phenomena and local order parameters (showing variations between 30% and 100%) are selectively and precisely determined, enabling the identification of the dendron cores as the structure-directing moieties within the supramolecular architecture. The study is carried out over a representative selection of systems which reflect characteristic differences, such as different polymer backbones, sizes of dendritic side groups, or length and flexibility of linking units. While the polymer backbone is found to have virtually no effect on the overall structure and properties, the systems are sensitively affected by changing the generation or the linkage of the dendrons. The results help to understand the self-assembly process of dendritic moieties and aid the chemical design of self-organizing molecular structures.