de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Phase separation in binary fluid mixtures with continuously ramped temperature

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons48934

Vollmer,  J.
MPI for Polymer Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons48933

Vollmer,  D.
MPI for Polymer Research, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Cates, M. E., Vollmer, J., Wagner, A., & Vollmer, D. (2003). Phase separation in binary fluid mixtures with continuously ramped temperature. Philosophical Transactions of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 361(1805), 793-804.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-6226-2
Zusammenfassung
We consider the demixing of a binary fluid mixture, under gravity, which is steadily driven into a two-phase region by slowly ramping the temperature. We assume, as a first approximation, that the system remains spatially isothermal, and we examine the interplay of two competing nonlinearities. One of these arises because the supersaturation is greatest far from the meniscus, creating inversions of the density which can lead to fluid motion; although isothermal, this is somewhat like the Benard problem (a single-phase fluid heated from below). The other is the intrinsic diffusive instability which results either in nucleation or in spinodal decomposition at large supersaturations. Experimental results on a simple binary mixture show interesting oscillations in heat capacity and optical properties, for a wide range of ramp parameters. We argue that these oscillations arise under conditions where both nonlinearities are important.