English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Closed-loop measurements of iso-response stimuli reveal dynamic nonlinear stimulus integration in the retina

MPS-Authors
/persons/resource/persons49474

Bölinger,  Daniel
Max Planck Research Group: Visual Coding / Gollisch, MPI of Neurobiology, Max Planck Society;

/persons/resource/persons38858

Gollisch,  Tim
Max Planck Research Group: Visual Coding / Gollisch, MPI of Neurobiology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Bölinger, D., & Gollisch, T. (2012). Closed-loop measurements of iso-response stimuli reveal dynamic nonlinear stimulus integration in the retina. Neuron, 73(2), 333-346. doi:10.1016/j.neuron.2011.10.039.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-50C4-9
Abstract
Neurons often integrate information from multiple parallel signaling
streams. How a neuron combines these inputs largely determines its
computational role in signal processing. Experimental assessment of
neuronal signal integration, however, is often confounded by
cell-intrinsic nonlinear processes that arise after signal integration
has taken place. To overcome this problem and determine how ganglion
cells in the salamander retina integrate visual contrast over space, we
used automated online analysis of recorded spike trains and closed-loop
control of the visual stimuli to identify different stimulus patterns
that give the same neuronal response. These iso-response stimuli
revealed a threshold-quadratic transformation as a fundamental
nonlinearity within the receptive field center. Moreover, for a subset
of ganglion cells, the method revealed an additional dynamic
nonlinearity that renders these cells particularly sensitive to
spatially homogeneous stimuli. This function is shown to arise from a
local inhibition-mediated dynamic gain control mechanism.