de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Peripheral and Central Inputs Shape Network Dynamics in the Developing Visual Cortex In Vivo

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons39074

Siegel,  Friederike
Department: Cellular and Systems Neurobiology / Bonhoeffer, MPI of Neurobiology, Max Planck Society;
External Organizations;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons38973

Lohmann,  Christian
Department: Cellular and Systems Neurobiology / Bonhoeffer, MPI of Neurobiology, Max Planck Society;
External Organizations;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Siegel, F., Heimel, J. A., Peters, J., & Lohmann, C. (2012). Peripheral and Central Inputs Shape Network Dynamics in the Developing Visual Cortex In Vivo. CURRENT BIOLOGY, 22(3), 253-258. doi:10.1016/j.cub.2011.12.026.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-50C2-D
Zusammenfassung
Spontaneous network activity constitutes a central theme during the development of neuronal circuitry [1, 2]. Before the onset of vision, retinal neurons generate waves of spontaneous activity that are relayed along the ascending visual pathway [3, 4] and shape activity patterns in these regions [5, 6]. The spatiotemporal nature of retinal waves is required to establish precise functional maps in higher visual areas, and their disruption results in enlarged axonal projection areas (e.g., [7-10]). However, how retinal inputs shape network dynamics in the visual cortex on the cellular level is unknown. Using in vivo two-photon calcium imaging, we identified two independently occurring patterns of network activity in the mouse primary visual cortex (V1) before and at the onset of vision. Acute manipulations of spontaneous retinal activity revealed that one type of network activity largely originated in the retina and was characterized by low synchronicity (L-) events. In addition, we identified a type of high synchronicity (H-) events that required gap junction signaling but were independent of retinal input. Moreover, the patterns differed in wave progression and developmental profile. Our data suggest that different activity patterns have complementary functions during the formation of synaptic circuits in the developing visual cortex.