de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Controlling on-surface polymerization by hierarchical and substrate-directed growth

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons21783

Lafferentz,  Leif
Physical Chemistry, Fritz Haber Institute, Max Planck Society;
IOM-CNR Laboratorio TASC, Area Science Park, 34149 Basovizza-Trieste, Italy;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21573

Grill,  Leonhard
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lafferentz, L., Eberhardt, V., Dri, C., Africh, C., Comelli, G., Esch, F., et al. (2012). Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nature Chemistry, 4, 215-220. doi:10.1038/nchem.1242.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-44EA-7
Zusammenfassung
A key challenge in the field of nanotechnology, in particular in the design of molecular machines, novel materials or molecular electronics, is the bottom-up construction of covalently bound molecular architectures in a well-defined arrangement. To date, only rather simple structures have been obtained because of the limitation of one-step connection processes. Indeed, for the formation of sophisticated structures, step-by-step connection of molecules is required. Here, we present a strategy for the covalent connection of molecules in a hierarchical manner by the selective and sequential activation of specific sites, thereby generating species with a programmed reactivity. This approach leads to improved network quality and enables the fabrication of heterogeneous architectures with high selectivity. Furthermore, substrate-directed growth and a preferred orientation of the molecular nanostructures are achieved on an anisotropic surface. The demonstrated control over reactivity and diffusion during covalent bond formation constitutes a promising route towards the creation of sophisticated multi-component molecular nanostructures.