Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The local potential approximation in quantum gravity

MPG-Autoren
/persons/resource/persons4798

Benedetti,  D.
Microscopic Quantum Structure & Dynamics of Spacetime, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1204.3541v1.pdf
(Preprint), 396KB

JHEP2012_017.pdf
(beliebiger Volltext), 640KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Benedetti, D., & Caravelli, F. (2012). The local potential approximation in quantum gravity. Journal of high energy physics: JHEP, 2012(6): 017. doi:10.1007/JHEP06(2012)017.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-448C-A
Zusammenfassung
Within the context of the functional renormalization group flow of gravity, we suggest that a generic f(R) ansatz (i.e. not truncated to any specific form, polynomial or not) for the effective action plays a role analogous to the local potential approximation (LPA) in scalar field theory. In the same spirit of the LPA, we derive and study an ordinary differential equation for f(R) to be satisfied by a fixed point of the renormalization group flow. As a first step in trying to assess the existence of global solutions (i.e. true fixed point) for such equation, we investigate here the properties of its solutions by a comparison of various series expansions and numerical integrations. In particular, we study the analyticity conditions required because of the presence of fixed singularities in the equation, and we develop an expansion of the solutions for large R up to order N=29. Studying the convergence of the fixed points of the truncated solutions with respect to N, we find a characteristic pattern for the location of the fixed points in the complex plane, with one point stemming out for its stability. Finally, we establish that if a non-Gaussian fixed point exists within the full f(R) approximation, it corresponds to an R^2 theory.