de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Estimating the allele frequency of autosomal recessive disorders through mutational records and consanguinity: The homozygosity index (HI)

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons32812

Gialluisi,  Alessandro
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society, Nijmegen, NL;
Language and Genetics Department, MPI for Psycholinguistics, Max Planck Society;
Unità Operativa di Genetica Medica, Dipartimento di Scienze Ginecologiche, Ostetriche e Pediatriche, Policlinico Sant’Orsola Malpighi, Università di Bologna, Bologna, Italy;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Gialluisi, A., Pippucci, T., Anikster, Y., Ozbek, U., Medlej-Hashim, M., Mégarbané, A., et al. (2012). Estimating the allele frequency of autosomal recessive disorders through mutational records and consanguinity: The homozygosity index (HI). Annals of Human Genetics, 76, 159-167. doi:10.1111/j.1469-1809.2011.00693.x.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-43A1-F
Abstract
In principle mutational records make it possible to estimate frequencies of disease alleles (q) for autosomal recessive disorders using a novel approach based on the calculation of the Homozygosity Index (HI), i.e., the proportion of homozygous patients, which is complementary to the proportion of compound heterozygous patients P(CH). In other words, the rarer the disorder, the higher will be the HI and the lower will be the P(CH). To test this hypothesis we used mutational records of individuals affected with Familial Mediterranean Fever (FMF) and Phenylketonuria (PKU), born to either consanguineous or apparently unrelated parents from six population samples of the Mediterranean region. Despite the unavailability of precise values of the inbreeding coefficient for the general population, which are needed in the case of apparently unrelated parents, our estimates of q are very similar to those of previous descriptive epidemiological studies. Finally, we inferred from simulation studies that the minimum sample size needed to use this approach is 25 patients either with unrelated or first cousin parents. These results show that the HI can be used to produce a ranking order of allele frequencies of autosomal recessive disorders, especially in populations with high rates of consanguineous marriages.