English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Quantum interference between charge excitation paths in a solid-state Mott insulator

MPS-Authors
/persons/resource/persons22209

Wall,  Simon
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

0910.3808.pdf
(Any fulltext), 785KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Wall, S., Brida, D., Clark, S., Ehrke, H., Jaksch, D., Ardavan, A., et al. (2011). Quantum interference between charge excitation paths in a solid-state Mott insulator. Nature Physics, 7(2), 114-118. doi:10.1038/NPHYS1831.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-3F2D-7
Abstract
Competition between electron localization and delocalization in Mott insulators underpins the physics of strongly correlated electron systems. Photoexcitation, which redistributes charge, can control this many-body process on the ultrafast timescale1, 2. So far, time-resolved studies have been carried out in solids in which other degrees of freedom, such as lattice, spin or orbital excitations3, 4, 5, dominate. However, the underlying quantum dynamics of ‘bare’ electronic excitations has remained out of reach. Quantum many-body dynamics are observed only in the controlled environment of optical lattices6, 7 where the dynamics are slower and lattice excitations are absent. By using nearly single-cycle near-infrared pulses, we have measured coherent electronic excitations in the organic salt ET-F2TCNQ, a prototypical one-dimensional Mott insulator. After photoexcitation, a new resonance appears, which oscillates at 25 THz. Time-dependent simulations of the Mott–Hubbard Hamiltonian reproduce the oscillations, showing that electronic delocalization occurs through quantum interference between bound and ionized holon–doublon pairs.