Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Resolving kinetics and dynamics of a catalytic reaction inside a fixed bed reactor by combined kinetic and spectroscopic profiling

MPG-Autoren
/persons/resource/persons21546

Geske,  Michael
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21756

Korup,  Oliver
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21641

Horn,  Raimund
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

c2cy20489d.pdf
(Verlagsversion), 4MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Geske, M., Korup, O., & Horn, R. (2013). Resolving kinetics and dynamics of a catalytic reaction inside a fixed bed reactor by combined kinetic and spectroscopic profiling. Catalysis science & technology, 3(1), 169-175. doi:10.1039/C2CY20489D.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-000F-3E4D-B
Zusammenfassung
The oxidative dehydrogenation of ethane to ethylene was studied using a MoO3 based catalyst supported on γ-alumina spheres. The measurement of species and temperature profiles through a fixed bed reactor shows for the first time the reaction pathways inside the catalyst bed directly. Oxidative dehydrogenation of ethane to ethylene and water occurs on the redox sites of MoO3 only in the presence of gas phase oxygen. Further oxidation of the product ethylene to carbon dioxide occurs as a subsequent reaction step by lattice oxygen of MoO3. Deep oxidation of ethylene to COv is the only existing reaction in the absence of gas phase oxygen reducing MoO3 to MoO2. Oxidation of CO and C2 H6 by lattice oxygen does not occur. The reduction of the catalyst can be followed by in situ fiber Raman spectroscopy as a function of the oxygen partial pressure. The in situ Raman measurements are complemented by ex situ micro-Raman spectroscopy and X-ray diffraction. The combined measurement of kinetic and spectroscopic reactor profiles presents a novel approach in in situ catalysis research to establish catalyst structure–function relationships under technically relevant conditions of temperature and pressure.