English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Iterative Entanglement Distillation: Approaching full Elimination of Decoherence

MPS-Authors
/persons/resource/persons40457

Hage,  Boris
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons1446

Samblowski,  Aiko
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40442

DiGuglielmo,  James
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

/persons/resource/persons40490

Schnabel,  Roman
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1007.1508
(Preprint), 856KB

PRL230502.pdf
(Any fulltext), 333KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Hage, B., Samblowski, A., DiGuglielmo, J., Fiurasek, J., & Schnabel, R. (2010). Iterative Entanglement Distillation: Approaching full Elimination of Decoherence. Physical Review Letters, 105(23): 230502. doi:10.1103/PhysRevLett.105.230502.


Cite as: https://hdl.handle.net/11858/00-001M-0000-000F-3B56-F
Abstract
The distribution and processing of quantum entanglement form the basis of quantum communication and quantum computing. The realization of the two is difficult because quantum information inherently has a high susceptibility to decoherence, i.e. to uncontrollable information loss to the environment. For entanglement distribution, a proposed solution to this problem is capable of fully eliminating decoherence; namely iterative entanglement distillation. This approach builds on a large number of distillation steps each of which extracts a number of weakly decohered entangled states from a larger number of strongly decohered states. Here, for the first time, we experimentally demonstrate iterative distillation of entanglement. Already distilled entangled states were further improved in a second distillation step and also made available for subsequent steps.Our experiment displays the realization of the building blocks required for an entanglement distillation scheme that can fully eliminate decoherence.