de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons22026

Rosenthal,  Dirk
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons21502

Farra,  Ramzi
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22094

Schuster,  Manfred Erwin
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22163

Teschner,  Detre
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1332667.pdf
(beliebiger Volltext), 1007KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Amrute, A. P., Mondelli, C., Moser, M., Novell-Leruth, G., López, N., Rosenthal, D., et al. (2012). Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2. Journal of Catalysis, 286, 287-297. doi:10.1016/j.jcat.2011.11.016.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-3A7C-3
Zusammenfassung
Experimental and theoretical studies reveal performance descriptors and provide molecular-level understanding of HCl oxidation over CeO2. Steady-state kinetics and characterization indicate that CeO2 attains a significant activity level, which is associated with the presence of oxygen vacancies. Calcination of CeO2 at 1173 K prior to reaction maximizes both the number of vacancies and the structural stability of the catalyst. X-ray diffraction and electron microscopy of samples exposed to reaction feeds with different O2/HCl ratios provide evidence that CeO2 does not suffer from bulk chlorination in O2-rich feeds (O2/HCl ≥ 0.75), while it does form chlorinated phases in stoichiometric or sub-stoichiometric feeds (O2/HCl ≤ 0.25). Quantitative analysis of the chlorine uptake by thermogravimetry and X-ray photoelectron spectroscopy indicates that chlorination under O2-rich conditions is limited to few surface and sub-surface layers of CeO2 particles, in line with the high energy computed for the transfer of Cl from surface to sub-surface positions. Exposure of chlorinated samples to a Deacon mixture with excess oxygen rapidly restores the original activity levels, highlighting the dynamic response of CeO2 outermost layers to feeds of different composition. Density functional theory simulations reveal that Cl activation from vacancy positions to surface Ce atoms is the most energy-demanding step, although chorine-oxygen competition for the available active sites may render re-oxidation as the rate-determining step. The substantial and remarkably stable Cl2 production and the lower of CeO2 make it an attractive alternative to RuO2 for catalytic chlorine recycling in industry.