de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Sonstige

Dynamic Perfect Hashing: Upper and Lower Bounds

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44318

Dietzfelbinger,  Martin
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Karlin,  Anna
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45021

Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Rohnert,  Hans
Max Planck Society;

Tarjan,  Robert E.
Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dietzfelbinger, M., Karlin, A., Mehlhorn, K., Meyer Auf Der Heide, F., Rohnert, H., & Tarjan, R. E. (1991). Dynamic Perfect Hashing: Upper and Lower Bounds.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-AE33-0
Zusammenfassung
The dynamic dictionary problem is considered: provide an algorithm for storing a dynamic set, allowing the operations insert, delete, and lookup. A dynamic perfect hashing strategy is given: a randomized algorithm for the dynamic dictionary problem that takes O(1) worst-case time for lookups and O(1) amortized expected time for insertions and deletions; it uses space proportional to the size of the set stored. Furthermore, lower bounds for the time complexity of a class of deterministic algorithms for the dictionary problem are proved. This class encompasses realistic hashing-based schemes that use linear space. Such algorithms have amortized worst-case time complexity OMEGA(log n) for a sequence of n insertions and lookups; if the worst-case lookup time is restricted to k then the lower bound becomes $OMEGA (k^cdot^n sup 1/k$).