de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Set Constraints are the Monadic Class

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44055

Bachmair,  Leo
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44474

Ganzinger,  Harald
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45689

Waldmann,  Uwe
Automation of Logic, MPI for Informatics, Max Planck Society;
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bachmair, L., Ganzinger, H., & Waldmann, U. (1993). Set Constraints are the Monadic Class. In Eighth Annual IEEE Symposium on Logic in Computer Science (pp. 75-83). Los Alamitos, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-ADE5-A
Zusammenfassung
We investigate the relationship between set constraints and the monadic class of first-order formulas and show that set constraints are essentially equivalent to the monadic class. From this equivalence we can infer that the satisfiability problem for set constraints is complete for NEXPTIME\@. More precisely, we prove that this problem has a lower bound of ${\rm NTIME}(c^{n/\log n})$. The relationship between set constraints and the monadic class also gives us decidability and complexity results for certain practically useful extensions of set constraints, in particular ``negative'' projections and subterm equality tests.