de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

A Multi-Modal Logic for Stereotyping

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44660

Hustadt,  Ullrich
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hustadt, U. (1994). A Multi-Modal Logic for Stereotyping. In Proceedings of the 4th International Conference on User Modeling {UM94} (pp. 87-92). Bedford, USA: The MITRE Corporation.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-AD57-8
Zusammenfassung
In a mixed-initiative dialogue between multiple interlocutors, the ability to construct, to maintain, and to exploit an explicit model of the dialogue partners' beliefs, goals, and plans is indispensable. An {\em agent model\/} is required for identifying the objects which the dialogue partner is talking about, for planning the appropriate dialogue contributions towards achieving the own goals, and for determining the effects of planned dialogue contributions on the dialogue partner. If we assume that we have no access to existing models of the dialogue partners, then we have to solve the problem of constructing the initial agent model at the beginning of the dialogue. The approach I propose here is in line with the {\em modal logic approach\/} to agent and stereotype modeling of Allgayer, Ohlbach, and Reddig (1992). The basic idea is to enhance a decidable fragment of first-order logic with modal operators modeling the notions of belief, knowledge, and desire. To provide reasoning capabilities we follow the translation approach of Nonnengart (1992). This amounts to manipulating modal logic formulas by a certain set of transformation rules so that classical, i.e.\ first-order, proof methods can be applied.