de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Buchkapitel

A Topography of Labelled Modal Logics

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44075

Basin,  David A.
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45002

Matthews,  Seán
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45670

Viganò,  Luca
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Basin, D. A., Matthews, S., & Viganò, L. (1996). A Topography of Labelled Modal Logics. In F. Baader, & K. U. Schulz (Eds.), Frontiers of Combining Systems (First International Workshop, Munich, March 1996) (pp. 75-92). Dordrecht, The Netherlands: Kluwer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-ABC7-B
Zusammenfassung
Labelled Deductive Systems provide a general method for representing logics in a modular and transparent way. A Labelled Deductive System consists of two parts, a base logic and a labelling algebra, which interact through a fixed interface. The labelling algebra can be viewed as an independent parameter: the base logic stays fixed for a given class of related logics from which we can generate the one we want by plugging in the appropriate algebra. Our work identifies an important property of the structured presentation of logics, their combination, and extension. Namely, there is tension between modularity and extensibility: a narrow interface between the base logic and labelling algebra can limit the degree to which we can make use of extensions to the labelling algebra. We illustrate this in the case of modal logics and apply simple results from proof theory to give examples.