de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Computing Mimicking Networks

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44233

Chaudhuri,  Shiva
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45570

Subrahmanyam,  K. V.
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45681

Wagner,  Frank
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45787

Zaroliagis,  Christos
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chaudhuri, S., Subrahmanyam, K. V., Wagner, F., & Zaroliagis, C. (1998). Computing Mimicking Networks. In K. G. Larsen, S. Skyum, & G. Winskel (Eds.), Proceedings of the 25th International Colloquium on Automata, Languages and Programming (ICALP-98) (pp. 556-567). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-3776-5
Zusammenfassung
A {\em mimicking network} for a $k$-terminal network, $N$, is one whose realizable external flows are the same as those of $N$. Let $S(k)$ denote the minimum size of a mimicking network for a $k$-terminal network. In this paper we give new constructions of mimicking networks and prove the following results (the values in brackets are the previously best known results): $S(4)=5~[2^{16}]$, $S(5)=6~[2^{32}]$. For bounded treewidth networks we show $S(k)= O(k)~[2^{2^{k}}]$, and for outerplanar networks we show $S(k) \leq 10k-6~[k^22^{k+2}]$.