de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Optimal Compaction of Orthogonal Grid Drawings

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44788

Klau,  Gunnar W.
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45092

Mutzel,  Petra
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Klau, G. W., & Mutzel, P. (1999). Optimal Compaction of Orthogonal Grid Drawings. In G. Cornuéjols, R. E. Burkard, & G. J. Woeginger (Eds.), Proceedings of the 7th International Conference on Integer Programming and Combinatorial Optimization (IPCO-99) (pp. 304-319). Berlin: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-35EE-7
Zusammenfassung
We consider the two--dimensional compaction problem for orthogonal grid drawings in which the task is to alter the coordinates of the vertices and edge segments while preserving the shape of the drawing so that the total edge length is minimized. The problem is closely related to two--dimensional compaction in VLSI--design and has been shown to be NP--hard. We characterize the set of feasible solutions for the two--dimensional compaction problem in terms of paths in the so--called constraint graphs in $x$-- and $y$--direction. Similar graphs (known as \emph{layout graphs}) have already been used for one--dimensional compaction in VLSI--design, but this is the first time that a direct connection between these graphs is established. Given the pair of constraint graphs, the two--dimensional compaction task can be viewed as extending these graphs by new arcs so that certain conditions are satisfied and the total edge length is minimized. We can recognize those instances having only one such extension; for these cases we solve the compaction problem in polynomial time. We transform the geometrical problem into a graph--theoretical one and formulate it as an integer linear program. Our computational experiments show that the new approach works well in practice.