de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

I/O-Efficient Dynamic Point Location in Monotone Subdivisions

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44187

Brodal,  Gerth Stølting
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Agarwal, P., Arge, L., Brodal, G. S., & Vitter, J. S. (1999). I/O-Efficient Dynamic Point Location in Monotone Subdivisions. In Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-99) (pp. 11-20). New York, USA: ACM.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-35D5-E
Zusammenfassung
We present an efficient external-memory dynamic data structure for point location in monotone planar subdivisions. Our data structure uses $O(N/B)$ disk blocks to store a monotone subdivision of size $N$, where $B$ is the size of a disk block. It supports queries in $O(\log_{B}^{2} N)$ I/Os (worst-case) and updates in $O(\log_{B}^{2} N)$ I/Os (amortized). We also propose a new variant of $B$-trees, called {\em level-balanced $B$-trees}, which allow insert, delete, merge, and split operations in $O((1+\frac{b}{B}\log_{M/B} \frac{N}{B})\log_{b} N)$ I/Os (amortized), $2\leq b\leq B/2$, even if each node stores a pointer to its parent. Here $M$ is the size of main memory. Besides being essential to our point-location data structure, we believe that {\em level-balanced B-trees\/} are of significant independent interest. They can, for example, be used to dynamically maintain a planar st-graph using $O((1+\frac{b}{B}\log_{M/B} \frac{N}{B})\log_{b} N)=O(\log_{B}^{2} N)$ I/Os (amortized) per update, so that reachability queries can be answered in $O(\log_{B} N)$ I/Os (worst case).