de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

On the complexity of inference about probabilistic relational models

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44689

Jaeger,  Manfred
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Jaeger, M. (2000). On the complexity of inference about probabilistic relational models. Artificial Intelligence, 117, 297-308.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-344A-0
Zusammenfassung
We investigate the complexity of probabilistic inference from knowledge bases that encode probability distributions on finite domain relational structures. Our interest here lies in the complexity in terms of the domain under consideration in a specific application instance. We obtain the result that assuming NETIME$\neq$ETIME this problem is not polynomial for reasonably expressive representation systems. The main consequence of this result is that it is unlikely to find inference techniques with a better worst-case behavior than the commonly employed strategy of constructing standard Bayesian networks over ground atoms (knowledge based model construction).