de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Improved Routing and Sorting on Multibutterflies

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45673

Vöcking,  Berthold
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Maggs, B. M., & Vöcking, B. (2000). Improved Routing and Sorting on Multibutterflies. Algorithmica, 28(4), 438-464. Retrieved from http://link.springer.de/link/service/journals/00453/contents/00/10049/paper/10049.pdf.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-33C3-4
Zusammenfassung
This paper shows that an $N$-node AKS network (as described by Paterson) can be embedded in a $\frac{3N}{2}$-node degree-8 multibutterfly network with load 1, congestion 1, and dilation 2. The result has several implications, including the first deterministic algorithms for sorting and finding the median of $n \log n$ keys on an $n$-input multibutterfly in $O(\log n)$ time, a work-efficient deterministic algorithm for finding the median of $n \log^2 n \log\log n$ keys on an $n$-input multibutterfly in $O(\log n \log\log n)$ time, and a three-dimensional VLSI layout for the $n$-input AKS network with volume $O(n^{3/2})$. While these algorithms are not practical, they provide further evidence of the robustness of multibutterfly networks. We also present a separate, and more practical, deterministic algorithm for routing $h$ relations on an $n$-input multibutterfly in $O(h + \log n)$ time. Previously, only algorithms for solving $h$ one-to-one routing problems were known. Finally, we show that a 2-folded butterfly, whose individual splitters do not exhibit expansion, can emulate a bounded-degree multibutterfly with $(\alpha,\beta)$-expansion, for any $\alpha \cdot \beta < 1/4$.