de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Single-Source Shortest-Paths on Arbitrary Directed Graphs in Linear Average-Case Time

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45038

Meyer,  Ulrich
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Meyer, U. (2001). Single-Source Shortest-Paths on Arbitrary Directed Graphs in Linear Average-Case Time. In Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA-01) (pp. 797-806). New York, USA: ACM.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-31BB-8
Zusammenfassung
The quest for a linear-time single-source shortest-path (SSSP) algorithm on directed graphs with positive edge weights is an ongoing hot research topic. While Thorup recently found an ${\cal O}(n+m)$ time RAM algorithm for undirected graphs with $n$ nodes, $m$ edges and integer edge weights in $\{0,\ldots, 2^w-1\}$ where $w$ denotes the word length, the currently best time bound for directed sparse graphs on a RAM is ${\cal O}(n+m \cdot \log\log n)$. In the present paper we study the average-case complexity of SSSP. We give a simple algorithm for arbitrary directed graphs with random edge weights uniformly distributed in $\left[0,1\right]$ and show that it needs linear time ${\cal O}(n+m)$ with high probability.