Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse




Journal Article

Improved Algorithms for the Steiner Problem in Networks


Polzin,  Tobias
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available

Polzin, T., & Vahdati Daneshmand, S. (2001). Improved Algorithms for the Steiner Problem in Networks. Discrete Applied Mathematics, 112, 263-300.

Cite as:
We present several new techniques for dealing with the Steiner problem in (undirected) networks. We consider them as building blocks of an exact algorithm, but each of them could also be of interest in its own right. First, we consider some relaxations of integer programming formulations of this problem and investigate different methods for dealing with these relaxations, not only to obtain lower bounds, but also to get additional information which is used in the computation of upper bounds and in reduction techniques. Then, we modify some known reduction tests and introduce some new ones. We integrate some of these tests into a package with a small worst case time which achieves impressive reductions on a wide range of instances. On the side of upper bounds, we introduce the new concept of heuristic reductions. On the basis of this concept, we develop heuristics that achieve sharper upper bounds than the strongest known heuristics for this problem despite running times which are smaller by orders of magnitude. Finally, we integrate these blocks into an exact algorithm. We present computational results on a variety of benchmark instances. The results are clearly superior to those of all other exact algorithms known to the authors.