de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Better Filtering with Gapped q-Grams

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44209

Burkhardt,  Stefan
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44717

Kärkkäinen,  Juha
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Burkhardt, S., & Kärkkäinen, J. (2001). Better Filtering with Gapped q-Grams. In A. Amir, & G. Landau (Eds.), Proceedings of the 12th Annual Symposium on Combinatorial Pattern Matching (pp. 73-85). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-3179-D
Zusammenfassung
The q-gram filter is a popular filtering method for approximate string matching. It compares substrings of length q (the q-grams) in the pattern and the text to identify the text areas that might contain a match. A generalization of the method is to use gapped q-grams, subsets of q characters in some fixed non-contiguous shape, instead of contiguous substrings. Although mentioned a few times in the literature, this generalization has never been studied in any depth. In ths paper, we report the first results from a study on gapped q-grams. We show that gapped q-grams can provide orders of magnitude faster and/or more efficient filtering than contiguous q-grams. The performance, however, depends on the shape of the q-grams. The best shaoes are rare and often posess no apparen regularity. We show how to recognize good shapes and demonstrate with experiments their advantage over both contiguous and average shapes. We concentrate here on the k mismatches problem, but also outline an approach for extending the results to the more common k differences problem.