de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Recursive resolution for modal logic

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44749

Kazakov,  Yevgeny
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44232

Charatonik,  Witold
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44474

Ganzinger,  Harald
Programming Logics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kazakov, Y. (2002). Recursive resolution for modal logic. In Symposium on the Effectiveness of Logic in Computer Science in Honour of Moshe Vardi (pp. 11-15). Saarbrücken, Germany: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-3052-B
Zusammenfassung
Resolution for the first order logic can be considered as a practical tool for obtaining a decision procedures for some theories (cf. \cite{arm}). For modal logics, however, there is no uniform formulation of the resolution principle, yet the normal modal logics are the most probable candidates to be decidable theories. The translational methods for modal logic, treated for instance in \cite{ohl}, yet possess some uniformness property, but does not let one to extract proofs from the refutations. On the other hand, direct methods (cf. \cite{far}, \cite{abadi}) are local which gives not much practical use of them. This paper presents some arguments on generalization of the classical propositional resolution method to the language of modal logic. We give a resolution calculus for modal logic $\K$ that inherits some features of classical resolution and propose some suggestions of how can it be used for other modal logics.