de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Minimum Congestion Redundant Assignments to Tolerate Random Faults

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44436

Fotakis,  Dimitris
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45532

Spirakis,  Paul G.
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Fotakis, D., & Spirakis, P. G. (2002). Minimum Congestion Redundant Assignments to Tolerate Random Faults. Algorithmica, 32, 396-422.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2FEE-4
Zusammenfassung
We consider the problem of computing minimum congestion, fault-tolerant, redundant assignments of messages to faulty, parallel delivery channels. In particular, we are given a set $K$ of faulty channels, each having an integer capacity $c_i$ and failing independently with probability $f_i$. We are also given a set $M$ of messages to be delivered over $K$, and a fault-tolerance constraint $(1-\epsilon)$, and we seek a redundant assignment $\phi$; that minimizes congestion ${\sf Cong}(\phi)$, i.e. the maximum channel load, subject to the constraint that, with probability no less than $(1-\epsilon)$, all the messages have a copy on at least one active channel. We present a polynomial-time 4-approximation algorithm for identical capacity channels and arbitrary message sizes, and a $2 \lceil \ln(|K|/\epsilon)/\ln(1/f_{{\rm max}}) \rceil$-approximation algorithm for related capacity channels and unit size messages. Both algorithms are based on computing a collection $\{K_1, \ldots, K_\nu\}$ of disjoint channel subsets such that, with probability no less than (1-\epsilon), at least one channel is active in each subset. The objective is to maximize the sum of the minimum subset capacities. Since the exact version of this problem is NP-complete, we provide a 2-approximation algorithm for identical capacities, and a polynomial-time $(8+{\rm o}(1))$-approximation algorithm for arbitrary capacities.