de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

The Relativistic Rindler Hydrodynamics

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45841

Eling,  Christopher
Quantum Gravity and Unified Theories, AEI Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1201.2705
(Preprint), 223KB

JHEP2012_116.pdf
(beliebiger Volltext), 348KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Eling, C., Meyer, A., & Oz, Y. (2012). The Relativistic Rindler Hydrodynamics. Journal of high energy physics: JHEP, 2012(5): 116. doi:10.1007/JHEP05(2012)116.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2EB4-A
Zusammenfassung
We consider a (d+2)-dimensional class of Lorentzian geometries holographically dual to a relativistic fluid flow in (d+1) dimensions. The fluid is defined on a (d+1)-dimensional time-like surface which is embedded in the (d+2)-dimensional bulk space-time and equipped with a flat intrinsic metric. We find two types of geometries that are solutions to the vacuum Einstein equations: the Rindler metric and the Taub plane symmetric vacuum. These correspond to dual perfect fluids with vanishing and negative energy densities respectively. While the Rindler geometry is characterized by a causal horizon, the Taub geometry has a timelike naked singularity, indicating pathological behavior. We construct the Rindler hydrodynamics up to the second viscous order and show the positivity of its entropy current divergence.