de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Smoothed Analysis of Three Combinatorial Problems

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44063

Banderier,  Cyril
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44108

Beier,  Rene
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45021

Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Banderier, C., Beier, R., & Mehlhorn, K. (2003). Smoothed Analysis of Three Combinatorial Problems. In Mathematical foundations of computer science 2003: 28th International Symposium, MFCS 2003 (pp. 198-207). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2E18-C
Zusammenfassung
Smoothed analysis combines elements over worst-case and average case analysis. For an instance $x$, the smoothed complexity is the average complexity of an instance obtained from $x$ by a perturbation. The smoothed complexity of a problem is the worst smoothed complexity of any instance. Spielman and Teng introduced this notion for continuous problems. We apply the concept to combinatorial problems and study the smoothed complexity of three classical discrete problems: quicksort, left-to-right maxima counting, and shortest paths.