de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Image-Based Reconstruction of Spatial Appearance and Geometric Detail

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44911

Lensch,  Hendrik P. A.
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44747

Kautz,  Jan
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44506

Goesele,  Michael
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44602

Heidrich,  Wolfgang
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Lensch, H. P. A., Kautz, J., Goesele, M., Heidrich, W., & Seidel, H.-P. (2003). Image-Based Reconstruction of Spatial Appearance and Geometric Detail. ACM Transactions on Graphics, 22, 234-257.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2D2E-4
Zusammenfassung
Real-world objects are usually composed of a number of different materials that often show subtle changes even within a single material. Photorealistic rendering of such objects requires accurate measurements of the reflection properties of each material, as well as the spatially varying effects. We present an image-based measuring method that robustly detects the different materials of real objects and fits an average bidirectional reflectance distribution function (BRDF) to each of them. In order to model local changes as well, we project the measured data for each surface point into a basis formed by the recovered BRDFs leading to a truly spatially varying BRDF representation. Real-world objects often also have fine geometric detail that is not represented in an acquired mesh. To increase the detail, we derive normal maps even for non-Lambertian surfaces using our measured BRDFs. A high quality model of a real object can be generated with relatively little input data. The generated model allows for rendering under arbitrary viewing and lighting conditions and realistically reproduces the appearance of the original object.