de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Enhancing Silhouette-based Human Motion Capture with 3D Motion Fields

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45610

Theobalt,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;
Programming Logics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44222

Carranza,  Joel
Computer Graphics, MPI for Informatics, Max Planck Society;
Graphics - Optics - Vision, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44965

Magnor,  Marcus
Graphics - Optics - Vision, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Theobalt, C., Carranza, J., Magnor, M., & Seidel, H.-P. (2003). Enhancing Silhouette-based Human Motion Capture with 3D Motion Fields. In 11th Pacific Conference on Computer Graphics and Applications (PG-03) (pp. 185-193). Los Alamitos, USA: IEEE.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2CDF-B
Zusammenfassung
High-quality non-intrusive human motion capture is necessary for acquistion of model-based free-viewpoint video of human actors. Silhouette-based approaches have demonstrated that they are able to accurately recover a large range of human motion from multi-view video. However, they fail to make use of all available information, specifically that of texture information. This paper presents an algorithm that uses motion fields constructed from optical flow in multi-view video sequences. The use of motion fields augments the silhoutte-based method by incorporating texture-information into the tracking process. The algorithm is a key-component in a larger free-viewpoint video system of human actors. Our results demonstrate that our method accurately estimates pose parameters and allows for realistic texture generation in 3D video sequences.