de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Compression of 2D vector fields under guaranteed topology preservation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45606

Theisel,  Holger
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45303

Rössl,  Christian
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Theisel, H., Rössl, C., & Seidel, H.-P. (2003). Compression of 2D vector fields under guaranteed topology preservation. In EUROGRAPHICS 2003 (EUROGRAPHICS-03): the European Association for Computer Graphics, 24th Annual Conference (pp. 333-342). Oxford, UK: Blackwell.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2C98-B
Zusammenfassung
In this paper we introduce a new compression technique for 2D vector fields which preserves the complete topology, i.e., the critical points and the connectivity of the separatrices. As the theoretical foundation of the algorithm, we show in a theorem that for local modifications of a vector field, it is possible to decide entirely by a local analysis whether or not the global topology is preserved. This result is applied in a compression algorithm which is based on a repeated local modification of the vector field - namely a repeated edge collapse of the underlying piecewise linear domain. We apply the compression technique to a number of data sets with a complex topology and obtain significantly improved compression ratios in comparison to pre-existing topology-preserving techniques.