de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Approximating Energy Efficient Paths in Wireless Multi-hop Networks

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44464

Funke,  Stefan
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45000

Matijevic,  Domagoj
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45344

Sanders,  Peter
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Funke, S., Matijevic, D., & Sanders, P. (2003). Approximating Energy Efficient Paths in Wireless Multi-hop Networks. In Algorithms - ESA 2003: 11th Annual European Symposium (pp. 230-241). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2C35-7
Zusammenfassung
Given the positions of $n$ sites in a radio network we consider the problem of finding routes between any pair of sites that minimize energy consumption and do not use more than some constant number $k$ of hops. Known exact algorithms for this problem required $\Omega(n \log n)$ per query pair $(p,q)$. In this paper we relax the exactness requirement and only require approximate $(1+\epsilon)$ solutions which allows us to derive schemes which guarantee constant query time using linear space and $O(n\log n)$ preprocessing time. The dependence on $\epsilon$ is polynomial in $1/\epsilon$. One tool used might be of independent interest: For any pair of points $(p,q)\in P\subseteq\mathbb{Z}^2$ report in constant time the cluster pair $(A,B)$ representing $(p,q)$ in a well-separated pair decomposition of $P$.