de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45503

Skutella,  Martin
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44695

Jansen,  Klaus
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hall, A., Langkau, K., & Skutella, M. (2003). An FPTAS for Quickest Multicommodity Flows with Inflow-Dependent Transit Times. In Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques; 6th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2003 and 7th International Workshop on Randomization and Approximation Techniques in Computer Science, RANDOM 2003 (pp. 71-82). Berlin, Germany: Springer.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-000F-2C27-7
Zusammenfassung
Given a network with capacities and transit times on the arcs, the quickest flow problem asks for a `flow over time' that satisfies given demands within minimal time. In the setting of flows over time, flow on arcs may vary over time and the transit time of an arc is the time it takes for flow to travel through this arc. In most real-world applications (such as, e.g., road traffic, communication networks, production systems, etc.), transit times are not fixed but depend on the current flow situation in the network. We consider the model where the transit time of an arc is given as a nondecreasing function of the rate of inflow into the arc. We prove that the quickest $s$-$t$-flow problem is NP-hard in this setting and give various approximation results, including an FPTAS for the quickest multicommodity flow problem with bounded cost.