de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Conference Paper

Spatio-Temporal Photon Density Estimation Using Bilateral Filtering

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45717

Weber,  Markus
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45047

Milch,  Marco
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45095

Myszkowski,  Karol
Computer Graphics, MPI for Informatics, Max Planck Society;

Dmitriev,  Kirill
Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45308

Rokita,  Przemyslaw
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Weber, M., Milch, M., Myszkowski, K., Dmitriev, K., Rokita, P., & Seidel, H.-P. (2004). Spatio-Temporal Photon Density Estimation Using Bilateral Filtering. In Computer Graphics International (CGI 2004) (pp. 120-127). Los Alamitos, USA: IEEE.


Cite as: http://hdl.handle.net/11858/00-001M-0000-000F-2B40-6
Abstract
Photon tracing and density estimation are well established techniques in global illumination computation and rendering of high-quality animation sequences. Using traditional density estimation techniques it is difficult to remove stochastic noise inherent for photon-based methods while avoiding overblurring lighting details. In this paper we investigate the use of bilateral filtering for lighting reconstruction based on the local density of photon hit points. Bilateral filtering is applied in spatio-temporal domain and provides control over the level-of-details in reconstructed lighting. All changes of lighting below this level are treated as stochastic noise and are suppressed. Bilateral filtering proves to be efficient in preserving sharp features in lighting which is in particular important for high-quality caustic reconstruction. Also, flickering between subsequent animation frames is substantially reduced due to extending bilateral filtering into temporal domain.